Tetrahedron Letters, Vol.27, No.38, pp 4557-4560, 1986 Printed in Great Britain 0040-4039/86 \$3.00 + .00 Pergamon Journals Ltd.

TOSYLOXYLACTONIZATION OF ALKENOIC ACIDS WITH [HYDROXY(TOSYLOXY)IODO]BENZENE

Mayur Shah, Michael J. Taschner*, Gerald F. Koser*, and Nancy L. Rach Department of Chemistry, The University of Akron Akron, Ohio 44325

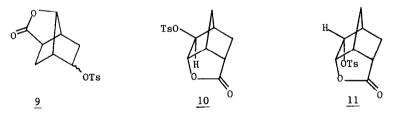
<u>Summary</u>: [Hydroxy(tosyloxy)iodo]benzene($\underline{1}$) reacts with 3-butenoic, 4-pentenoic, 5hexenoic and 2-methyl-4-pentenoic acids in CH₂Cl₂ to give tosyloxylactones and with <u>trans</u>-3hexenoic and 2-cyclopenteneacetic acids to give unsaturated lactones. 5-Norbornene-<u>endo</u>-2carboxylic acid with $\underline{1}$ gives a rearranged lactone while 5-norbornene-<u>endo</u>-2,3-dicarboxylic acid gives a <u>bis</u>-lactone.

The general utility of the iodo-^{1,2} and phenylselenolactonization³ reactions in organic synthesis prompted us to investigate the reactions of [hydroxy(tosyloxy)iodo]benzene($\underline{1}$)⁴⁻⁶ with a series of representative alkenoic acids. A previous finding that $\underline{1}$ reacts with various alkenes to give <u>vic</u>- bis(tosyloxy)alkanes($\underline{2}$) with <u>cis</u> stereospecificity^{7,8} suggested that alkenoic acids might give tosyloxylactones with $\underline{1}$.

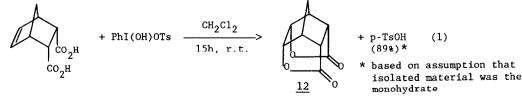
When a solution of 4-pentenoic acid (11 mMol) in CH_2Cl_2 (5 mL) was added dropwise at room temperature to a stirred mixture of <u>1</u> (10 mMol) and CH_2Cl_2 (60 mL), heat was evolved, and most of the hypervalent iodine reagent disappeared within 15 minutes. After six hours, the reaction mixture was washed (water, satd NaHCO₃, brine), dried and concentrated to an oil. Treatment of the oil with ether (removes iodobenzene) delivered 5-tosyloxy-4-pentanolactone(<u>3</u>) in 60 % yield: mp 80.5-81.5°C; IR(film) 1784 cm⁻¹ (C=O); ¹H NMR (CDCl₃) δ 1.7-2.7 and 2.42(complex m and s, 7H), 4.1(unsym. three-line m, 2H), 4.59("septet", 1H), 7.46(AA'BB' m, 4H); <u>Anal</u>. C, 53.04%; H, 5.19%.

Similar treatment of 3-butenoic, 5-hexenoic and 2-methyl-4-pentenoic acids with \underline{l} in

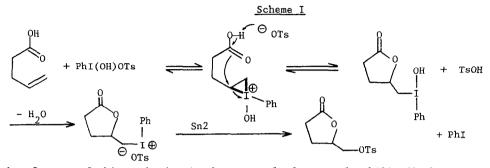
Alkenoic Acid	Reaction Conditions	Product ^C 0	<u>Yield^d Mpe</u>
сн ₂ -сн(сн ₂) ₂ соон	CH ₂ Cl ₂ ,6h,r.t. ^a	<u> </u>	60%, 80.5-81.5°C
сн ₂ =снсн ₂ соон	CH ₂ Cl ₂ ,3h,reflux ^b	TsO 4	55%, 109-112°C
сн ₂ =сн(сн ₂) ₃ соон	CH ₂ Cl ₂ ,3.5h,r.t. ^a	<u>5</u>	52%, 78-79°C
CH ₃ CH ₂ =CHCH ₂ CHCOOH	CH ₂ Cl ₂ , ~ 2h,r.t. ^a	$Me \underbrace{\begin{pmatrix} 0 \\ H \\ 0 \\ \underline{6} \end{pmatrix}}_{CH_2 OTs} CH_2 OTs$	65%, 92-95°C
CH ₂ COOH	CH ₂ Cl ₂ ,4h,r.t. ^a DBU		56%, oil
СH ₃ CH ₂ H С-С Н СН ₂ СООН	CH ₂ Cl ₂ ,5h,r.t. ^a DBU	e ch2ch3	32%, oil


Table I. Reactions of Alkenoic Acids with [Hydroxy(toxyloxy)iodo]benzene.

^a10.0 mMol each of acid and 1. ^b23 mMol each of acid and 1. ^cCompounds 3, 4, 5, 6, and 8 were characterized by spectral (IR, ¹H NMR) and elemental analysis; the C,H percentages were within +0.4% of the calculated values in all cases. Compound $\underline{7}$ was identified by comparison of its spectra (IR, ¹H NMR) with those of the authentic material prepared by the phenylselenolactonization method. ^dYields are based on crude products, most of which were reasonably clean (by NMR). Crude $\underline{7}$ contained an obvious impurity (AA'BB' m in the ¹H NMR spectrum). ^eUncorrected.


 CH_2Cl_2 gave moderate yields of 3-tosyloxy-4-butanolactone(4), 6-tosyloxy-5-hexanolactone(5) and 5-tosyloxy-2-methyl-4-pentanolactone(6), all as crystalline solids; see Table I. The reactions of alkenoic acids with 1 typically proceed with the formation of some p-toluenesulfonic acid. For example, in one experiment with 3-butenoic acid, the yield of p-TsOH, determined by titration of the aqueous extract from the initial workup, was found to be 39%.

In some cases, tosyloxylactones were not isolated. Thus, 2-cyclopenteneacetic and <u>trans</u>-3-hexenoic acids reacted with <u>1</u> to give the unsaturated lactones <u>7</u> and <u>8</u> and high yields (70% and 71%) of p-TsOH.⁹ Although tosyloxylactones may also have been present in the crude product mixtures, they were not successfully separated, and the yields of <u>7</u> and <u>8</u> given in Table I are based upon treatment of the product mixtures with DBU prior to chromatographic isolation.


5-Norbornene-<u>endo</u>-2-carboxylic acid reacted with <u>1</u> in CH_2Cl_2 to give a low yield of a tosyloxylactone tentatively assigned the rearranged structure <u>9</u>¹⁰ (21% yield at room temperature, 28% yield at <u>ca</u>. 0°C.) and a high yield (57%, 60%) of p-TsOH. That the structure of the product is neither <u>10</u> nor <u>11</u> was confirmed by comparison of its melting point and spectra (IR, ¹H NMR) with those of the known compounds.¹¹

When 5-norbornene-<u>endo</u>-2,3-dicarboxylic acid was mixed with <u>1</u> in CH_2Cl_2 , the products were p-toluenesulfonic acid and the <u>bis</u>-lactone <u>12</u> (mp 273-275°C [lit.¹² mp 263°C]); eq 1. After the p-TsOH was removed, the filtrate was washed (water, satd NaHCO₃, brine), dried and concentrated. Treatment of the residual material with ether gave <u>12</u> in 49% yield. The monomethyl ester of the diacid reacted similarly with <u>1</u>.

A plausible mechanism for the tosyloxylactonization of alkenoic acids with $\underline{1}$ is illustrated in Scheme \underline{I} with 4-pentenoic acid.

A key feature of this mechanism is the proposal of two nucleophilic displacements at carbon, both with inversion of configuration, and the expectation, therefore, of a <u>cis</u>-relationship between the lactone ring and the tosyloxy function. Unfortunately, 2-cyclopenteneacetic acid and 5-norbornene-<u>endo</u>-2-carboxylic acid, both likely substrates for the elucidation of the stereochemistry of tosyloxylactonization, exhibited divergent modes of reactivity, and the sterochemical question needs yet to be resolved.

References and Notes

- 1. Bartlett, P.A.; Meyerson, J. J. Am. Chem. Soc. 1978, 100, 3950.
- 2. House, H.O. "Modern Synthetic Reactions," 2nd ed.; W.A. Benjamin, New York, 1972; p. 441.
- 3. Nicolaou, K.C.; Seitz, S.P.; Sipio, W.J.; Blount, J.F. J. Am. Chem. Soc. 1979, 101, 3884.
- 4. Neiland, O.; Karele, B. <u>J. Org. Chem.USSR(Engl. Transl.)</u> 1970, <u>6</u>, 889.
- 5. Koser, G.F.; Wettach, R.H. J. Org. Chem. 1977, <u>42</u>, 1476.
- 6. Koser, G.F.; Wettach, R.H.; Troup, J.M.; Frenz, B.A. <u>J. Org. Chem.</u> 1976, <u>41</u>, 3609.
- 7. Koser, G.F.; Rebrovic, L.; Wettach, R.H. J. Org. Chem. 1981, 46, 4324.
- 8. Rebrovic, L.; Koser, G.F. J. Org. Chem. 1984, 49, 2462.
- 9. The yields of p-TsOH were determined by titration of the aqueous extracts of initial reaction mixtures in separate experiments from those for which the lactone yields in Table I are given.
- 10. The same product, obtained from reaction of an <u>endo:exo</u> mixture of 5-norbornene-2 carboxylic acid with <u>1</u>, was characterized by elemental (C,H) and spectral (IR, ¹H NMR) analysis. The product obtained from the <u>endo</u> acid was identified by comparison of its melting point and spectra with those of the former.
- We wish to thank Dr. Robert M. Moriarty (University of Illinois, Chicago campus) for providing us with melting points and spectra of compounds <u>10</u> and <u>11</u>, previously prepared in his laboratory.
- 12. Corey, E.J.; Gross, A.W. Tetrahedron Lett. 1980, 1819.

(Received in USA 25 June 1986)